Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Int J Nanomedicine ; 19: 3315-3332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617797

RESUMO

Background: Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods: In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results: The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion: Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Animais , Ratos , Peróxido de Hidrogênio , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Carbono
2.
J Pharm Anal ; 14(3): 335-347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618242

RESUMO

Hyaluronan and proteoglycan link protein 1 (Hapln1) supports active cardiomyogenesis in zebrafish hearts, but its regulation in mammal cardiomyocytes is unclear. This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and an adult mouse model of myocardial infarction. HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models, respectively. Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration. The results showed that recombinant human Hapln1 (rhHapln1) promotes the proliferation of hiPSC-CMs in a dose-dependent manner. As a physical binding protein of Hapln1, versican interacted with Nodal growth differentiation factor (NODAL) and growth differentiation factor 11 (GDF11). GDF11, but not NODAL, was expressed by hiPSC-CMs. GDF11 expression was unaffected by rhHapln1 treatment. However, this molecule was required for rhHapln1-mediated activation of the transforming growth factor (TGF)-ß/Drosophila mothers against decapentaplegic protein (SMAD)2/3 signaling in hiPSC-CMs, which stimulates cell dedifferentiation and proliferation. Recombinant mouse Hapln1 (rmHapln1) could induce cardiac regeneration in the adult mouse model of myocardial infarction. In addition, rmHapln1 induced hiPSC-CM proliferation. In conclusion, Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-ß/SMAD2/3 signaling pathway. Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.

3.
Biomed Pharmacother ; 174: 116507, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.

4.
J Gastrointest Oncol ; 15(1): 147-163, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482228

RESUMO

Background: As one of the major metabolic reprogramming pathways, fatty acid oxidation (FAO) contributes to rapid progression in tumor cells. Nevertheless, the genomic patterns of patients' FAO levels in colorectal cancer (CRC) remain unknown. Hence, it is crucial to identify the interplay mechanisms of molecular biochemical features of FAO in CRC. Methods: Data of patients with CRC were accessed from The Cancer Genome Atlas (TCGA). Unsupervised consensus clustering related to FAO sores was conducted. The differentially expressed genes (DEGs) were screened by clustering according to FAO status polarized in TCGA, followed by the construction of the scores of genes related to FAO (GFAO_Score). Enrichment of FAO and carcinogenesis at the cell level were calculated based on the single-cell RNA (scRNA) sequencing analysis. The clinical values and drug analysis of GFAO_Score were evaluated by external validation cohorts from Gene Expression Omnibus (GEO) datasets. Results: We classified patients into two distinct FAO clusters which indicated those with lower FAO levels had poor prognosis and high enrichment of carcinogenic-gene pathways. Further, the high FAO-enriched subtypes in epithelial cells revealed carcinogenesis. Three FAO-related genes (ZFHX4, AQP8, and AKR1B10) were screened to construct the GFAO_Score. The high GFAO_Score group leaned toward advanced CRC and unfavorable survival outcomes in the validation cohort. The low GFAO_Score group possessed a better response to immunotherapy and exhibited lower IC50 (50% inhibition concentration) values for certain chemotherapy drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, paclitaxel, and camptothecin. Conclusions: FAO patterns vary in patients with CRC. The GFAO_Score might contribute to the precise screening of patients according to metabolism reprogramming and optimization of strategies in clinical practice.

5.
Cell Chem Biol ; 31(3): 380-382, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518743

RESUMO

Bioorthogonal chemistry was deservedly recognized with the 2022 Nobel Prize in Chemistry, having transformed the way chemists and biologists interrogate biological systems in the past twenty years. This Voices piece asks researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?


Assuntos
Prêmio Nobel , Química
6.
Mediators Inflamm ; 2024: 8869510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445290

RESUMO

Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/ß-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/ß-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/ß-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.


Assuntos
Infecções Bacterianas , beta Catenina , Humanos , Bactérias , Via de Sinalização Wnt , Inflamação , Anti-Inflamatórios
7.
Heliyon ; 10(4): e25866, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384585

RESUMO

Background: The immune microenvironment and hypoxia play crucial roles in the pathophysiology of ischemic stroke (IS). Hence, in this study, we aimed to identify hypoxia- and immune-related biomarkers in IS. Methods: The IS microarray dataset GSE16561 was examined to determine differentially expressed genes (DEGs) utilizing bioinformatics-based analysis. The intersection of hypoxia-related genes and DEGs was conducted to identify differentially expressed hypoxia-related genes (DEHRGs). Then, using weighted correlation network analysis (WGCNA), all of the genes in GSE16561 dataset were examined to create a co-expression network, and module-clinical trait correlations were examined for the purpose of examining the genes linked to immune cells. The immune-related DEHRGs were submitted to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed by Cytoscape plugin MCODE, in order to extract hub genes. The miRNet was used to predict hub gene-related transcription factors (TFs) and miRNAs. Finally, a diagnostic model was developed by least absolute shrinkage and selection operator (LASSO) logistic regression. Results: Between the control and IS samples, 4171 DEGs were found. Thereafter, the intersection of hypoxia-related genes and DEGs was conducted to obtain 45 DEHRGs. Ten significantly differentially infiltrated immune cells were found-namely, CD56dim natural killer cells, activated CD8 T cells, activated dendritic cells, activated B cells, central memory CD8 T cells, effector memory CD8 T cells, natural killer cells, gamma delta T cells, plasmacytoid dendritic cells, and neutrophils-between IS and control samples. Subsequently, we identified 27 immune-related DEHRGs through the intersection of DEHRGs and genes in important modules of WGCNA. The immune-related DEHRGs were primarily enriched in response to hypoxia, cellular polysaccharide metabolic process, response to decreased oxygen levels, polysaccharide metabolic process, lipid and atherosclerosis, and HIF-1 signaling pathway H. Using MCODE, FOS, DDIT3, DUSP1, and NFIL3 were found to be hub genes. In the validation cohort and training set, the AUC values of the diagnostic model were 0.9188034 and 0.9395085, respectively. Conclusion: In brief, we identified and validated four hub genes-FOS, DDIT3, DUSP1, and NFIL3-which might be involved in the pathological development of IS, potentially providing novel perspectives for the diagnosis and treatment of IS.

8.
Clin Pharmacol Ther ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369608

RESUMO

This was an open-label, single-dose, phase I study to characterize the pharmacokinetics (PKs), pharmacodynamics (PDs), and safety of edoxaban in pediatric subjects from birth to 18 years at risk for venous thromboembolism (VTE). Children requiring anticoagulant therapy were enrolled into 5 age cohorts (0 to < 6 months (N = 12), 0.5 to < 2 years (N = 13), 2 to < 6 years (N = 13), 6 to < 12 years (N = 13), and 12 to < 18 years (N = 15)) receiving tablet or oral suspension of edoxaban at doses expected to be equivalent to 30 or 60 mg once daily (q.d.) in adult subjects with VTE. Sixty-six pediatric subjects were enrolled and completed the study. Edoxaban plasma concentration peaked between 1 and 3 hours and declined rapidly until 4-8 hours. The range of mean total apparent clearance across 5 age cohorts at low and high doses was 0.47 to 1.11 L/h/kg. The ranges of mean volume of central compartment and apparent peripheral volume were 2.31 to 3.59 L/kg and 1.92 to 4.14 L/kg, respectively. Across all age groups, the estimated median exposures were within the 0.5- to 1.5-fold of the median area under the plasma drug concentration-time curve (AUC) in adult subjects receiving corresponding doses (30 mg q.d. for low dose and 60 mg q.d. for high dose). In all age groups, PD parameters (prothrombin time, activated partial thromboplastin time, and anti-Factor Xa activity) showed a linear PK-PD relationship and were in line with previous adult data. The results support further evaluation of the pediatric doses in larger pivotal trials.

9.
Fish Shellfish Immunol ; 145: 109374, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218422

RESUMO

As an adaptor protein functions essentially in the activation of NF-κΒ and MAPK signaling pathways mediated by NOD1 and NOD2, RIP2 plays important roles in the host innate immune responses. In the present study, the RIP2 ortholog termed Lc-RIP2 was identified and characterized in large yellow croaker (Larimichthys crocea). It was revealed that Lc-RIP2 is consisted of an open reading frame (ORF) of 1695 bp, encoding a protein of 564 aa, with an N-terminal kinase domain and a C-terminal caspase activation and recruitment domain (CARD). Subcellular localization assays demonstrated that Lc-RIP2 was a cytosolic protein, which was broadly distributed in the examined tissues/organs, and could be induced in response to poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations in vivo according to qRT-PCR analysis. Notably, Lc-RIP2 overexpression in vitro was sufficient to abolish SVCV proliferation in EPC cells, and could significantly induce the activation of NF-κB, IRF3, IRF7, and IFN1 promoters. In addition, luciferase assays found that Lc-RIP2 could cooperate with Lc-MAVS, Lc-TRAF3, Lc-TRAF6, Lc-IRF3, and Lc-IRF7 in NF-κB activation, associate with Lc-TRIF, Lc-MAVS, Lc-TRAF3, Lc-IRF3, and Lc-IRF7 in IRF3 activation, enhance Lc-TRIF, Lc-MAVS, Lc-TRAF3, and Lc-TRAF6 mediated IRF7 activation, and Lc-IRF3 mediated IFN1 activation, whereas suppress NF-κB activation when co-expressed with Lc-TRIF. Co-immunoprecipitation (Co-IP) assays also demonstrated that Lc-RIP2 interacts separately with Lc-TRIF, Lc-MAVS, Lc-TRAF3, Lc-TRAF6, Lc-IRF3, and Lc-IRF7. It is thus collectively indicated that Lc-RIP2 function dominantly in the regulation of the host innate immune signaling.


Assuntos
NF-kappa B , Perciformes , Animais , NF-kappa B/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Sequência de Aminoácidos , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular , Antivirais
10.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164168

RESUMO

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Morte Celular
11.
Biochem Genet ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233694

RESUMO

The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.

12.
Heliyon ; 10(1): e23960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226269

RESUMO

Electrical stimulation (ES) of the spinal cord is a promising therapy for functional rehabilitation after spinal cord injury (SCI). However, the specific mechanism of action is poorly understood. We designed and applied an implanted ES device in the SCI area in rats and determined the effect of ES on the treatment of motor dysfunction after SCI using behavioral scores. Additionally, we examined the molecular characteristics of the samples using proteomic and transcriptomic sequencing. The differential molecules between groups were identified using statistical analyses. Molecular, network, and pathway-based analyses were used to identify group-specific biological features. ES (0.5 mA, 0.1 ms, 50 Hz) had a positive effect on motor dysfunction and neuronal regeneration in rats after SCI. Six samples (three independent replicates in each group) were used for transcriptome sequencing; we obtained 1026 differential genes, comprising 274 upregulated genes and 752 downregulated genes. A total of 10 samples were obtained: four samples in the ES group and six samples in the SCI group; for the proteome sequencing, 48 differential proteins were identified, including 45 up-regulated and three down-regulated proteins. Combined transcriptomic and proteomic studies have shown that the main enrichment pathway is the hedgehog signaling pathway. Western blot results showed that the expression levels of Sonic hedgehog (SHH) (P < 0.001), Smoothened (SMO) (P = 0.0338), and GLI-1 (P < 0.01) proteins in the ES treatment group were significantly higher than those in the SCI group. The immunofluorescence results showed significantly increased expression of SHH (P = 0.0181), SMO (P = 0.021), and GLI-1 (P = 0.0126) in the ES group compared with that in the SCI group. In conclusion, ES after SCI had a positive effect on motor dysfunction and anti-inflammatory effects in rats. Moreover, transcriptomic and proteomic sequencing also provided unique perspectives on the complex relationships between ES on SCI, where the SHH signaling pathway plays a critical role. Our study provides a significant theoretical foundation for the clinical implementation of ES therapy in patients with SCI.

13.
Small ; 20(7): e2306800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823676

RESUMO

Thermally activated delayed fluorescence (TADF) materials have been widely studied for the fabrication of high-performance organic light-emitting diodes (OLEDs), but the serious efficiency roll-offs still remain unsolved in most cases. Herein, it is wish to report a series of robust green TADF compounds containing rigid xanthenone acceptor and acridine-based spiro donors. The enhancement in molecular rigidity not only endows the compounds with improved thermal stability but also results in reduced geometric vibrations and thus lowered reorganization energies. These compounds exhibit distinct merits of high thermal stabilities, excellent photoluminescence quantum efficiencies (96%-97%), large horizontal dipole orientation ratios (87.4%-92.1%) and fast TADF rates (1.4-1.5 × 106 s-1 ). The OLEDs using them as emitters furnish superb electroluminescence performances with outstanding external quantum efficiencies (ηext s) of up to 37.4% and very small efficiency roll-offs. Moreover, highly efficient hyperfluorescence OLEDs are obtained by using them as sensitizers for the green mutilresonance TADF emitter BN2, delivering excellent ηext s of up to 34.2% and improved color purity. These results disclose the high potential of these TADF compounds as emitters and sensitizers for OLEDs.

14.
Angew Chem Int Ed Engl ; 63(4): e202316481, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063138

RESUMO

Boronate rearrangements, such as the Matteson and Petasis reactions, are valuable metal-free reactions for the transfer of the carbo group on boron to intramolecular electrophilic sites. However, only highly reactive electrophiles are suitable, and ketones are too inactive for those boronate rearrangements due to the high energy barriers. We disclose here the 1,3-boronate rearrangement to ketones, for which a high energy barrier (44.9 kcal/mol) is prohibitory for thermal reactions in the ground state. The reaction is enabled by the key keto-enol-boronate bidentate complex formation in situ, which absorbs visible light to reach the excited state for the chemoselective 1,3-boronate rearrangement to ketones. Experimental and computational investigations exclude free radical intermediates from organoboronates. The aryl, alkenyl, and alkyl boronic acids react with various 1,3-diketones driven by visible light irradiation to construct structurally diverse ß-keto tertiary alcohols under metal-free conditions. The reaction demonstrates substrate diversity with 58 examples, yields up to 98 %, and it is suitable for gram-scale synthesis.

15.
Biomed Pharmacother ; 170: 115901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056238

RESUMO

BACKGROUND: Hepatitis C virus (HCV) vaccines are an urgent need to prevent hepatitis C and its further progression of hepatocellular carcinoma. Since the promising T cell based chimpanzee adenovirus and modified vaccinia virus Ankara vectorial HCV vaccines were failed in clinical phase II trial, the vaccine designs to improve protection efficacy in combination of cellular and humoral immunity have been hypothesized against multi-genotypic HCV. METHODS: Eight HCV vaccine strains were constructed with two novel adenovirus vectors (Sad23L and Ad49L) encoding E1E2 or NS3-5B proteins of HCV genotype (Gt) 1b and 6a isolates, covering 80 % HCV strains prevalent in south China and south-east Asia. Eight HCV vaccine strains were grouped into Sad23L-based vaccine cocktail-1 and Ad49L-based vaccine cocktail-2 for vaccinating mice, respectively. RESULTS: The immunogenicity of a single dose of 107-1010 PFU HCV individual vaccines was evaluated in mice, showing weak specific antibody to E1 and E2 protein but a dose-dependent T cell response to E1E2/NS3-5B peptides, which could be significantly enhanced by boosting with an alternative vector vaccine carrying homologous antigen. Prime-boost vaccinations with vaccine cocktail-1 and cocktail-2 induced significantly higher cross-reactive antibody and stronger T cell responses to HCV Gt-1b/6a. The high frequency of intrasplenic and intrahepatic NS31629-1637 CD8+ T cell responses were identified, in which the high proportion of TRM and TEM cells might play an important role against HCV infection in liver. CONCLUSIONS: Prime-boost regimens with HCV vaccine cocktails elicited the broad cross-reactive antibody and robust T cell responses against multi-genotypic HCV in mice.


Assuntos
Hepatite C , Vacinas , Animais , Camundongos , Hepacivirus/genética , Hepatite C/prevenção & controle , Vetores Genéticos , Vírus Vaccinia/genética , Adenoviridae/genética , Imunidade , Genótipo
16.
Environ Pollut ; 343: 123167, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110051

RESUMO

Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , PPAR delta , Camundongos , Masculino , Humanos , Animais , Espermatócitos , PPAR delta/farmacologia , Cálcio/metabolismo , Espermatogênese , Estresse do Retículo Endoplasmático , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Retículo Endoplasmático/metabolismo , Estresse Fisiológico , Apoptose , Homeostase
17.
Chemistry ; : e202303990, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060300

RESUMO

Red luminescent materials are essential components for full color display and white lightening based on organic light-emitting diode (OLED) technology, but the extension of emission color towards red or deep red region generally leads to decreased photoluminescence and electroluminescence efficiencies. Herein, we wish to report two new luminescent molecules (2CNDPBPPr-TPA and 4CNDPBPPr-TPA) consisting of cyano-substituted 11,12-diphenyldipyrido[3,2-a:2',3'-c]phenazine acceptors and triphenylamine donors. As the increase of cyano substituents, the emission wavelength is greatly red-shifted and the reverse intersystem crossing process is promoted, resulting in strong red delayed fluorescence. Meanwhile, due to the formation of intramolecular hydrogen bonds, the molecular structures become rigidified and planarized, which brings about large horizontal dipole ratios. As a result, 2CNDPBPPr-TPA and 4CNDPBPPr-TPA can perform as emitters efficiently in OLEDs, furnishing excellent external quantum efficiencies of 28.8 % at 616 nm and 20.2 % at 648 nm, which are significantly improved in comparison with that of the control molecule without cyano substituents. The findings in this work demonstrate that the introduction of cyano substituents to the acceptors of delayed fluorescence molecules could be a facile and effective approach to explore high-efficiency red or deep red delayed fluorescence materials.

18.
Nat Commun ; 14(1): 8201, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081810

RESUMO

The axon initial segment (AIS) is a specialized neuronal compartment required for action potential generation and neuronal polarity. However, understanding the mechanisms regulating AIS structure and function has been hindered by an incomplete knowledge of its molecular composition. Here, using immuno-proximity biotinylation we further define the AIS proteome and its dynamic changes during neuronal maturation. Among the many AIS proteins identified, we show that SCRIB is highly enriched in the AIS both in vitro and in vivo, and exhibits a periodic architecture like the axonal spectrin-based cytoskeleton. We find that ankyrinG interacts with and recruits SCRIB to the AIS. However, loss of SCRIB has no effect on ankyrinG. This powerful and flexible approach further defines the AIS proteome and provides a rich resource to elucidate the mechanisms regulating AIS structure and function.


Assuntos
Segmento Inicial do Axônio , Segmento Inicial do Axônio/metabolismo , Proteoma/metabolismo , Biotinilação , Axônios/metabolismo , Neurônios/metabolismo
19.
Nat Commun ; 14(1): 7390, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968266

RESUMO

Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.


Assuntos
Grânulos Citoplasmáticos , RNA , Humanos , Animais , RNA/metabolismo , Células HEK293 , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico/genética , Mamíferos/genética
20.
Nat Commun ; 14(1): 7217, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940635

RESUMO

Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...